Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy
نویسندگان
چکیده
Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.
منابع مشابه
Design and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber
Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...
متن کاملOptical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers.
Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging technology for visualizing optically absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, OR-PAM imaging speed is limited by both scanning speed and laser pulse repetition rate. Unfortunate...
متن کاملCollecting back-reflected photons in photoacoustic microscopy
Since the photoacoustic effect relies only on the absorbed optical energy, the back-reflected photons from samples in optical-resolution photoacoustic microscopy are usually discarded. By employing a 2 x 2 single-mode fiber optical coupler in a laser-scanning optical-resolution photoacoustic microscope for delivering the illuminating laser light and collecting the back reflected photons, a fibe...
متن کاملNear-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier
We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.
متن کاملAll-optical photoacoustic microscopy
Three-dimensional photoacoustic microscopy (PAM) has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM), which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embod...
متن کامل